Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The decomposition of oceanic flow into its geostrophically balanced and unbalanced motions carries theoretical and practical significance for the oceanographic community. These two motions have distinct dynamical characteristics and affect the transport of tracers differently from one another. The launch of the Surface Water and Ocean Topography (SWOT) satellite provides a prime opportunity to diagnose the surface balanced and unbalanced motions on a global scale at an unprecedented spatial resolution. Here, we apply dynamic‐mode decomposition (DMD), a linear‐algebraic data‐driven method, to tidally‐forced idealized and realistic numerical simulations at submesoscale‐permitting resolution and one‐day‐repeat SWOT observations of sea‐surface height (SSH) in the Gulf Stream downstream of Cape Hatteras, a region commonly referred to as the separated Gulf Stream. DMD is able to separate out the spatial modes associated with sub‐inertial periods from super‐inertial periods. The sub‐inertial modes of DMD can be used to extract geostrophically balanced motions from SSH fields, which have an imprint of internal gravity waves, so long as the data extends long enough in time. We utilize the statistical relation between relative vorticity and strain rate as the metric to gauge the extraction of geostrophy.more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            Abstract Parameterization of mesoscale eddies in coarse resolution ocean models is necessary to include the effect of eddies on the large‐scale oceanic circulation. We propose to use a multiple‐scale Quasi‐Geostrophic (MSQG) model to capture the eddy dynamics that develop in response to a prescribed large‐scale flow. The MSQG model consists in extending the traditional quasi geostrophic (QG) dynamics to include the effects of a variable Coriolis parameter and variable background stratification. Solutions to this MSQG equation are computed numerically and compared to a full primitive equation model. The large‐scale flow field permits baroclinically unstable QG waves to grow. These instabilities saturate due to non‐linearities and a filtering method is applied to remove large‐scale structures that develop due to the upscale cascade. The resulting eddy field represents a dynamically consistent response to the prescribed background flow, and can be used to rectify the large‐scale dynamics. Comparisons between Gent‐McWilliams eddy parameterization and the present solutions show large regions of agreement, while also indicating areas where the eddies feed back onto the large scale in a manner that the Gent‐McWilliams parameterization cannot capture. Also of interest is the time variability of the eddy feedback which can be used to build stochastic eddy parameterizations.more » « less
- 
            Abstract Statistical characterization of oceanic flows has been a long standing issue; such information is invaluable for formulating hypotheses and testing them. It also allows us to understand the energy pathways within the ocean, which is highly turbulent. Here, we apply the wavelet approach to wavenumber spectral analysis, which has recently been proved to be beneficial in quantifying the spatially heterogeneous and anisotropic nature of oceanic flows. Utilizing an eddy‐rich ensemble simulation of the North Atlantic, we are able to examine the spectral transfers of eddy kinetic energy (EKE) and effect of potential energy, here defined via dynamic enthalpy, on the EKE spectral budget. We find that vertical advection of EKE modulates the up‐ and down‐scale direction and strength of EKE spectral flux throughout the North Atlantic domain. The vertical eddy buoyancy flux tends to be small below the mixed layer, suggesting that the flow is largely adiabatic. In maintaining this adiabatic nature, the eddy advection of dynamic enthalpy and practical salinity tend to partially compensate for the eddy advection of potential temperature; this partial cancellation between temperature and salinity is similar to the thermodynamic spice variable.more » « less
- 
            Abstract The potential role of the New England seamount chain (NESC) on the Gulf Stream pathway and variability has been long recognized, and the series of numerical experiments presented in this paper further emphasize the importance of properly resolving the NESC when modeling the Gulf Stream. The NESC has a strong impact on the Gulf Stream pathway and variability, as demonstrated by comparison experiments with and without the NESC. With the NESC removed from the model bathymetry, the Gulf Stream remains a stable coherent jet much farther east than in the experiment with the NESC. The NESC is the leading factor destabilizing the Gulf Stream and, when it is not properly resolved by the model’s grid, its impact on the Gulf Stream’s pathway and variability is surprisingly large. A high-resolution bathymetry, which better resolves the New England seamounts (i.e., narrower and rising higher in the water column), leads to a tighter Gulf Stream mean path that better agrees with the observed path and a sea surface height variability distribution that is in excellent agreement with the observations.more » « less
- 
            Abstract We examine the ocean energy cycle where the eddies are defined about the ensemble mean of a partially air–sea coupled, eddy-rich ensemble simulation of the North Atlantic. The decomposition about the ensemble mean leads to a parameter-free definition of eddies, which is interpreted as the expression of oceanic chaos. Using the ensemble framework, we define the reservoirs of mean and eddy kinetic energy (MKE and EKE, respectively) and mean total dynamic enthalpy (MTDE). We opt for the usage of dynamic enthalpy (DE) as a proxy for potential energy due to its dynamically consistent relation to hydrostatic pressure in Boussinesq fluids and nonreliance on any reference stratification. The curious result that emerges is that the potential energy reservoir cannot be decomposed into its mean and eddy components, and the eddy flux of DE can be absorbed into the EKE budget as pressure work. We find from the energy cycle that while baroclinic instability, associated with a positive vertical eddy buoyancy flux, tends to peak around February, EKE takes its maximum around September in the wind-driven gyre. Interestingly, the energy input from MKE to EKE, a process sometimes associated with barotropic processes, becomes larger than the vertical eddy buoyancy flux during the summer and autumn. Our results question the common notion that the inverse energy cascade of wintertime EKE energized by baroclinic instability within the mixed layer is solely responsible for the summer-to-autumn peak in EKE and suggest that both the eddy transport of DE and transfer of energy from MKE to EKE contribute to the seasonal EKE maxima. Significance StatementThe Earth system, including the ocean, is chaotic. Namely, the state to be realized is highly sensitive to minute perturbations, a phenomenon commonly known as the “butterfly effect.” Here, we run a sweep of ocean simulations that allow us to disentangle the oceanic expression of chaos from the oceanic response to the atmosphere. We investigate the energy pathways between the two in a physically consistent manner in the North Atlantic region. Our approach can be extended to robustly examine the temporal change of oceanic energy and heat distribution under a warming climate.more » « less
- 
            Abstract. With the increase in computational power, ocean models with kilometer-scale resolution have emerged over the last decade. These models have been used for quantifying the energetic exchanges between spatial scales, informing the design of eddy parametrizations, and preparing observing networks. The increase in resolution, however, has drastically increased the size of model outputs, making it difficult to transfer and analyze the data. It remains, nonetheless, of primary importance to assess more systematically the realism of these models. Here, we showcase a cloud-based analysis framework proposed by the Pangeo project that aims to tackle such distribution and analysis challenges. We analyze the output of eight submesoscale-permitting simulations, all on the cloud, for a crossover region of the upcoming Surface Water and Ocean Topography (SWOT) altimeter mission near the Gulf Stream separation. The cloud-based analysis framework (i) minimizes the cost of duplicating and storing ghost copies of data and (ii) allows for seamless sharing of analysis results amongst collaborators. We describe the framework and provide example analyses (e.g., sea-surface height variability, submesoscale vertical buoyancy fluxes, and comparison to predictions from the mixed-layer instability parametrization). Basin- to global-scale, submesoscale-permitting models are still at their early stage of development; their cost and carbon footprints are also rather large. It would, therefore, benefit the community to document the different model configurations for future best practices. We also argue that an emphasis on data analysis strategies would be crucial for improving the models themselves.more » « less
- 
            Abstract The “eddying” ocean, recognized for several decades, has been the focus of much observational and theoretical research. We here describe a generalization for the analysis of eddy energy, based on the use of ensembles, that addresses two key related issues: the definition of an “eddy” and the general computation of energy spectra. An ensemble identifies eddies as the unpredictable component of the flow, and permits the scale decomposition of their energy in inhomogeneous and non‐stationary settings. We present two distinct, but equally valid, spectral estimates: one is similar to classical Fourier spectra, the other reminiscent of classical empirical orthogonal function analysis. Both satisfy Parseval's equality and thus can be interpreted as length‐scale dependent energy decompositions. The issue of “tapering” or “windowing” of the data, used in traditional approaches, is also discussed. We apply the analyses to a mesoscale “resolving” (1/12°) ensemble of the separated North Atlantic Gulf Stream. Our results reveal highly anisotropic spectra in the Gulf Stream and zones of both agreement and disagreement with theoretically expected spectral shapes. In general, we find spectral slopes that fall off faster than the steepest slope expected from quasi‐geostrophic theory.more » « less
- 
            Abstract A wavelet‐based method is re‐introduced in an oceanographic and spectral context to estimate wavenumber spectrum and spectral flux of kinetic energy and enstrophy. We apply this to a numerical simulation of idealized, doubly periodic quasi‐geostrophic flows, that is, the flow is constrained by the Coriolis force and vertical stratification. The double periodicity allows for a straightforward Fourier analysis as the baseline method. Our wavelet spectra agree well with the canonical Fourier approach but with the additional strengths of negating the necessity for the data to be periodic and being able to extract local anisotropies in the flow. Caution is warranted, however, when computing higher‐order quantities, such as spectral flux.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
